

Durham E-Theses

Secondary flows and losses in gas turbines.

Graves, C.P.

How to cite:

Graves, C.P. (1985) Secondary flows and losses in gas turbines., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/1238/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

SECONDARY FLOWS AND LOSSES IN

GAS TURBINES

Volume II of II

CHRISTOPHER PAUL GRAVES

Department of Engineering University of Durham

A thesis submitted for the degree of Doctor of Philosophy of the University of Durham

March 1985

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

BEST COPY

AVAILABLE

Variable print quality

LIST OF FIGURES Volume Two

- 3.1 Low Speed Wind Tunnel Working Section and Cascade Arrangement
- 3.2 Position of Blade Surface Pressure Tappings at Midspan
- 3.3 Positions of the Experimental Traversing Slots
- 3.4 Cascade Sign Convention
- 3.5 Cascade Endwall Boundary Layer Disturber
- 3.6 Data Acquisition System
- 3.7 Pressure Probe Arrangement
- 3.8 Hot Wire Probe Stem Arrangement
- 3.9 Probe Traversing Gear
- 3.10 Data Acquisition System for Pressure Probe Traversing
- 3.11 Data Acquisition System for Hot Wire Probe Traversing
- 3.12 Pressure Probe Calibration Mounting
- 3.13 Hot Wire Probe Calibration Jet
- 3.14 Hot Wire Probe Calibration Jet Traverse Data
- 3.15 A Typical Hot Wire Anemometer Calibration
- 3.16 Conditional Sampling of Pressure Probe Data
- 3.17 Conditional Sampling Method
- 3.18 Five-Hole Probe Data Analysis
- 3.19 Five-Hole Probe ϕ and ψ at $\alpha=0$
- 3.20 Five-Hole Probe Data Analysis: An Analysis Cell
- 3.21 A Contour Plotting Cell
- 3.22 Thick Line Plotting Algorithm
- 3.23 A Vector Scaling Cell
- Slot 1 Data (Figures 4.1 4.7)
- 4.1 Experimental Data Points
- 4.2 Total Pressure Loss Coefficient Contours

- 4.3 Streamwise Spanwise Angle Contours
- 4.4 Yaw Angle Contours
- 4.5 Vector Plot of Secondary Velocities
- 4.6 Static Pressure Coefficient Contours
- 4.7 Total Velocity Magnitude Contours
- 4.8 Section Through An Idealized Passage Vortex

Slot 2 Data (Figures 4.9 - 4.15)

- 4.9 Experimental Data Points
- 4.10 Total Pressure Loss Coefficient Contours
- 4.11 Total Velocity Magnitude Contours
- 4.12 Vector Plot of Secondary Velocities
- 4.13 Spanwise Angle Contours
- 4.14 Yaw Angle Contours
- 4.15 Static Pressure Coefficient Contours

Slot 3 Data (Figures 4.16 - 4.22)

- 4.16 Experimental Data Points
- 4.17 Total Pressure Loss Coefficient Contours
- 4.18 Total Velocity Magnitude Contours
- 4.19 Vector Plot of Secondary Velocities
- 4.20 Spanwise Angle Contours
- 4.21 Yaw Angle Contours
- 4.22 Static Pressure Coefficient Contours

Slot 4 Data (Figures 4.23 - 4.29)

- 4.23 Experimental Data Points
- 4.24 Total Pressure Loss Coefficient Contours
- 4.25 Total Velocity Magnitude Contours
- 4.26 Vector Plot of Secondary Velocities

- 4.27 Spanwise Angle Contours
- 4.28 Yaw Angle Contours
- 4.29 Static Pressure Coefficient Contours
- Slot 5 Data (Figures 4.30 4.36)
- 4.30 Experimental Data Points
- 4.31 Total Pressure Loss Coefficient Contours
- 4.32 Total Velocity Magnitude Contours
- 4.33 Vector Plot of Secondary Velocities
- 4.34 Spanwise Angle Contours
- 4.35 Yaw Angle Contours
- 4.36 Static Pressure Coefficient Contours

Slot 6 Data (Figures 4.37 - 4.43)

- 4.37 Experimental Data Points
- 4.38 Total Pressure Loss Coefficient Contours
- 4.39 Total Velocity Magnitude Contours
- 4.40 Vector Plot of Secondary Velocities
- 4.41 Spanwise Angle Contours
- 4.42 Yaw Angle Contours
- 4.43 Static Pressure Coefficient Contours
- Slot 7 Data (Figures 4.44 4.50)
- 4.44 Experimental Data Points
- 4.45 Total Pressure Loss Coefficient Contours
- 4.46 Total Velocity Magnitude Contours
- 4.47 Vector Plot of Secondary Velocities
- 4.48 Spanwise Angle Contours
- 4.49 Yaw Angle Contours
- 4.50 Static Pressure Coefficient Contours

4.51 Blade Passage Loss Core Development and Loci of Passage Vortex Centre and Loss Core Peak

Slot 8 Data (Figures 4.52 - 4.58)

- 4.52 Experimental Data Points
- 4.53 Total Pressure Loss Coefficient Contours
- 4.54 Total Velocity Magnitude Contours
- 4.55 Vector Plot of Secondary Velocities
- 4.56 Spanwise Angle Contours
- 4.57 Yaw Angle Contours
- 4.58 Static Pressure Coefficient Contours

Slot 9 Data (Figures 4.59 - 4.65)

- 4.59 Experimental Data Points
- 4.60 Total Pressure Loss Coefficient Contours
- 4.61 Total Velocity Magnitude Contours
- 4.62 Vector Plot of Secondary Velocities
- 4.63 Spanwise Angle Contours
- 4.64 Yaw Angle Contours
- 4.65 Static Pressure Coefficient Contours

Slot 10 Data (Figures 4.66 - 4.73)

- 4.66 Experimental Data Points
- 4.67 Total Pressure Loss Coefficient Contours
- 4.68 Midspan Tangential Traverse Results
- 4.69 Total Velocity Magnitude Contours
- 4.70 Vector Plot of Secondary Velocities
- 4.71 Spanwise Angle Contours
- 4.72 Yaw Angle Contours
- 4.73 Static Pressure Coefficient Contours

- 4.74 Loss Core Development Downstream of the Blade Passage
- 4.75 Loci of Passage Vortex Centre and Loss Core Peak
- 4.76 Pitchwise Mass Meaned Data Upstream of the Cascade
- 4.77 Pitchwise Mass Meaned Overturning Angle Within the Blade Passage
- 4.78 Pitchwise Mass Meaned Total Pressure Loss Coefficient Within the Blade Passage
- 4.79 Pitchwise Mass Meaned Overturning Angle Downstream of the Cascade
- 4.80 Pitchwise Mass Meaned Total Pressure Loss Coefficient Downstream of the Cascade
- 4.81 Developmentof Area Mass Averaged Total Pressure Loss Coefficient
- 4.82 Development of Secondary Losses
- 4.83 Normalized Cascade Mass Flow Rate

Plots on Constant Span Surfaces

4.84 Plot on Plane 20.1 mm from Perspex Endwall (Five-Hole Probe Data) Experimental Data Points

Total Pressure Loss Coefficient Contours (Figures 4.85 - 4.95)

- 4.85 Plot on Plane 1.0 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.86 Plot on Plane 5.0 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.87 Plot on Plane 5.0 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.88 Plot on Plane 20.1 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.89 Plot on Plane 20.1 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.90 Plot on Plane 40.0 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.91 Plot on Plane 60.0 mm from Perspex Endwall (Five-Hole Probe Data)

- 4.92 Plot on Plane 80.0 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.93 Plot on Plane 100.1 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.94 Plot on Plane 140.1 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.95 Plot on Plane 220.1 mm from Perspex Endwall (Five-Hole Probe Data)

Total Velocity Magnitude Contours (Figures 4.96 - 4.100)

- 4.96 Plot on Plane 1.0 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.97 Plot on Plane 20.1 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.98 Plot on Plane 20.1 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.99 Plot on Plane 50.1 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.100 Plot on Plane 220.1 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.101 Two Dimensional Velocity Distribution Predicted Values

Vector Plots of Axial and Tangential Velocities (Figures 4.102-4.112)

- 4.102 Plot on Plane 1.0 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.103 Plot on Plane 2.0 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.104 Plot on Plane 3.0 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.105 Plot on Plane 4.0 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.106 Plot on Plane 5.0 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.107 Plot on Plane 7.4 mm from Perspex Endwall (Three-Hole Probe Data)

- 4.108 Plot on Plane 15.0 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.109 Plot on Plane 40.0 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.110 Plot on Plane 60.0 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.111 Plot on Plane 100.1 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.112 Plot on Plane 220.1 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.113 Plot on Plane 20.1 mm from Perspex Endwall (Five-Hole Probe Data) Spanwise Angle Contours
- 4.114 Plot on Plane 20.1 mm from Perspex Endwall (Five-Hole Probe Data) Yaw Angle Contours
- 4.115 Plot on Plane 220.1 mm from Perspex Endwall (Five-Hole Probe Data) Spanwise Angle Contours
- 4.116 Plot on Plane 220.1 mm from Perspex Endwall (Five-Hole Probe Data) Yaw Angle Contours

Static Pressure Coefficient Contours (Figures 4.117 - 4.122)

- 4.117 Plot on Plane 1.0 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.118 Plot on Plane 20.1 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.119 Plot on Plane 20.1 mm from Perspex Endwall (Three-Hole Probe Data)
- 4.120 Plot on Plane 30.0 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.121 Plot on Plane 60.0 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.122 Plot on Plane 220.1 mm from Perspex Endwall (Five-Hole Probe Data)
- 4.123 Two Dimensional Static Pressure Coefficient Distribution Predicted Values

Plots on Pseudo Stream Surfaces Averaged Tangential Experimental Points (Figures 4.124 - 4.125)

4.124 93.3% of Blade Pitch Less Thickness from Suction Surface

4.125 6.7% of Blade Pitch Less Thickness from Suction Surface Experimental Data Points (Figures 4.126 – 4.127)

4.126 93.3% of Blade Pitch Less Thickness from Suction Surface
4.127 6.7% of Blade Pitch Less Thickness from Suction Surface
Total Pressure Loss Coefficient Contours (Figures 4.128 - 4.139)

4.128 93.3% of Blade Pitch Less Thickness from Suction Surface 4.129 85.4% of Blade Pitch Less Thickness from Suction Surface 77.5% of Blade Pitch Less Thickness from Suction Surface 4.130 69.7% of Blade Pitch Less Thickness from Suction Surface 4.131 4.132 61.8% of Blade Pitch Less Thickness from Suction Surface 4.133 53.9% of Blade Pitch Less Thickness from Suction Surface 4.134 46.1% of Blade Pitch Less Thickness from Suction Surface 4.135 38.2% of Blade Pitch Less Thickness from Suction Surface 4.136 30.3% of Blade Pitch Less Thickness from Suction Surface 4.137 22.5% of Blade Pitch Less Thickness from Suction Surface 4.138 14.6% of Blade Pitch Less Thickness from Suction Surface 4.139 6.7% of Blade Pitch Less Thickness from Suction Surface

4.140 Spanwise Migration of the Loss Core

Total Velocity Magnitude Contours (Figures 4.141 - 4.142)

4.141 93.3% of Blade Pitch Less Thickness from Suction Surface
4.142 6.7% of Blade Pitch Less Thickness from Suction Surface
<u>Vector Plots of Axial and Spanwise Velocities</u> (Figures 4.143 – 4.154)
93.3% of Blade Pitch Less Thickness from Suction Surface
4.143 85.4% of Blade Pitch Less Thickness from Suction Surface
4.145 77.5% of Blade Pitch Less Thickness from Suction Surface
4.146 69.7% of Blade Pitch Less Thickness from Suction Surface
4.147 61.8% of Blade Pitch Less Thickness from Suction Surface

4.149 46.1% of Blade Pitch Less Thickness from Suction Surface 4.150 38.2% of Blade Pitch Less Thickness from Suction Surface 30.3% of Blade Pitch Less Thickness from Suction Surface 4.151 22.5% of Blade Pitch Less Thickness from Suction Surface 4.152 4.153 14.6% of Blade Pitch Less Thickness from Suction Surface 4.154 6.7% of Blade Pitch Less Thickness from Suction Surface 4.155 6.7% of Blade Pitch Less Thickness from Blade Suction Surface Yaw Angle Contours 4.156 Zero Cross Flow Angle Contours Close to the Blade Suction Surface

53.9% of Blade Pitch Less Thickness from Suction Surface

4.148

Static Pressure Coefficient Contours (Figures 4.157 to 4.161)

- 4.157 93.3% of Blade Pitch Less Thickness from Suction Surface
- 4.158 53.9% of Blade Pitch Less Thickness from Suction Surface
- 4.159 38.2% of Blade Pitch Less Thickness from Suction Surface
- 4.160 22.5% of Blade Pitch Less Thickness from Suction Surface
- 4.161 6.7% of Blade Pitch Less Thickness from Suction Surface
- 4.162 Blade Surface Static Pressure Coefficient Distribution (Showing Data from Adjacent Passages)
- 4.163 Blade Surface Static Pressure Coefficient Distribution Natural Boundary Layer Data
- 4.164 Plot on Blade Pressure Surface Location of Blade Surface Static Pressure Tappings
- 4.165 Plot on Blade Suction Surface Location of Blade Surface Static Pressure Tappings
- 4.166 Plot on Blade Pressure Surface Natural Boundary Layer Data Static Pressure Coefficient Contours
- 4.167 Plot on Blade Suction Surface Natural Boundary Layer Data Static Pressure Coefficient Contours

Slot 1 - Mean Flow Hot Wire Probe Data (Figures 5.1 - 5.4)		
	5.1	Hot Wire Experimental Data Points
	5.2	Total Velocity Magnitude Contours
	5.3	Yaw Angle Contours
	5.4	Pitchwise Mass Meaned Hot Wire Probe Data
	5.5	Slot 1 - Streamwise Spanwise Angle Contours (As New Wire Sensitivities)
	5.6	Slot 1 - Streamwise Spanwise Angle Contours (Run End Wire Sensitivities)
	<u>Slot 1 – 1</u> (Figures	Fluctuating Flow Hot Wire Probe Data 5.7 - 5.14)
	5.7	Normalized Turbulent Kinetic Energy Contours
	5.8	Turbulence Intensity Contours for u'
	5.9	Turbulence Intensity Contours for v'
	5.10	Turbulence Intensity Contours for w'
	5.11	Slot1 – Pitchwise Mass Meaned Relative Turbulence Intensities (As New Wire Sensitivities)
	5.12	Slot 1 - Pitchwise Mass Meaned Relative Turbulence Intensities (Run End Wire Sensitivities)
	5.13	Normalized Shear Stress Contours (From uv Correlation)
	5.14	Normalized Shear Stress Contours (From uw Correlation)
Slot 8 Mean Flow Hot Wire Probe Data (Figures 5.15 - 5.19)		
	5.15	Hot Wire Experimental Data Points
	5.16	Total Velocity Magnitude Contours
	5.17	Yaw Angle Contours
	5.18	Pitchwise Mass Meaned Hot Wire Probe Data
	5.19	Spanwise Angle Contours

Slot 8 Fluctuating Flow Hot Wire Probe Data (Figures 5.20 - 5.26)

- 5.20 Normalized Turbulent Kinetic Energy Contours
- 5.21 Turbulence Intensity Contours for u'
- 5.22 Turbulence Intensity Contours for v'
- 5.23 Turbulence Intensity Contours for w'
- 5.24 Pitchwise Mass Meaned Relative Turbulence Intensities
- 5.25 Pitchwise Mass Meaned Relative Turbulent Kinetic Energy and Total Pressure Loss Coefficient
- 5.26 Normalized Shear Stress Contours (From uv Correlation)
- 5.27 Normalized Shear Stress Contours (From uw Correlation)
- Slot 1 Data (Figures 6.1 6.7)
- 6.1 Experimental Data Points Thickened Inlet Boundary Layer
- 6.2 Total Pressure Loss Coefficient Contours Thickened Inlet Boundary Layer
- 6.3 Total Pressure Loss Coefficient Contours Thinned Inlet Boundary layer
- 6.4 Streamwise Spanwise Angle Contours Thickened Inlet Boundary Layer
- 6.5 Streamwise Spanwise Angle Contours Thinned Inlet Boundary Layer
- 6.6 Total Velocity Magnitude Contours Thickened Inlet Boundary Layer
- 6.7 Total Velocity Magnitude Contours Thinned Inlet Boundary Layer

Slot 8 Data - (Figures 6.8 - 6.14)

- 6.8 Total Pressure Loss Coefficient Contours Thickened Inlet Boundary Layer
- 6.9 Total Pressure Loss Coefficient Contours Thinned Inlet Boundary Layer
- 6.10 Comparison of the Three Inlet Boundary Layer Loss Cores

- 6.11 Vector Plot of Secondary Velocities Thickened Inlet Boundary Layer
- 6.12 Vector Plot of Secondary Velocities Thinned Inlet Boundary Layer
- 6.13 Static Pressure Coefficient Contours Thickened Inlet Boundary Layer
- 6.14 Static Pressure Coefficient Contours Thinned Inlet Boundary Layer

Slot 10 Data (Figures 6.15 - 6.22)

- 6.15 Experimental Data Points Thickened Inlet Boundary Layer
- 6.16 Total Pressure Loss Coefficient Contours Thickened Inlet Boundary Layer
- 6.17 Total Pressure Loss Coefficient Contours Thinned Inlet Boundary Layer
- 6.18 Comparison of the Three Inlet Boundary Layer Loss Cores
- 6.19 Vector Plot of Secondary Velocities Thickened Inlet Boundary Layer
- 6.20 Vector Plot of Secondary Velocities Thinned Inlet Boundary Layer
- 6.21 Static Pressure Coefficient Contours Thickened Inlet Boundary Layer
- 6.22 Static Pressure Coefficient Contours Thinned Inlet Boundary Layer
- 6.23 Pitchwise Mass Meaned Yaw Angle Upstream of the Cascade
- 6.24 Pitchwise Mass Meaned Total Pressure Loss Coefficient Upstream of the Cascade
- 6.25 Slot 8 Pitchwise Mass Meaned Yaw Angle
- 6.26 Slot 10 Pitchwise Mass Meaned Yaw Angle
- 6.27 Slot8 Pitchwise Mass Meaned Total Pressure Loss Coefficient
- 6.28 Slot 10 Pitchwise Mass Meaned Total Pressure Loss Coefficient

- 6.29 Blade Surface Static Pressure Coefficient Distribution Thickened Boundary Layer Data
- 6.30 Blade Surface Static Pressure Coefficient Distribution Thinned Boundary Layer Data
- 6.31 Plot on Blade Pressure Surface Thickened Boundary Layer Data Static Pressure Coefficient Contours
- 6.32 Plot on Blade Pressure Surface Thinned Boundary Layer Data Static Pressure Coefficient Contours
- 6.33 Plot on Blade Suction Surface Thickened Boundary Layer Data Static Pressure Coefficient Contours
- 6.34 Plot on Blade Suction Surface Thinned Boundary Layer Data Static Pressure Coefficient Contours
- 7.1 The Triangular Loss Core
- 7.2 Durham Cascade Exit Angle Prediction Natural Inlet Boundary layer
- 7.3 Durham Cascade Secondary Loss Prediction Natural Inlet Boundary Layer
- 7.4 Durham Cascade Exit Angle Prediction Thickened Inlet Boundary Layer
- 7.5 Durham Cascade Secondary Loss Prediction Thickened Inlet Boundary Layer
- 7.6 Durham Cascade Exit Angle Prediction Thinned Inlet Boundary Layer
- 7.7 Durham Cascade Secondary Loss Prediction Thinned Inlet Boundary Layer
- 7.8 Carrick's Cascade Secondary Loss Prediction Zero Inlet Skew Low Reynolds Number
- 7.9 Carrick's Cascade Secondary Loss Prediction High Inlet Skew Low Reynolds Number
- 7.10 Sjolander's Cascade Secondary Loss Prediction
- 7.11 Test Turbine Nozzle Guide Vane Exit Angle Prediction
- 7.12 Test Turbine Nozzle Guide Vane Secondary Loss Prediction
- 7.13 Test Turbine Rotor Exit Angle Prediction
- 7.14 Test Turbine Rotor Secondary Loss Prediction

- AllI.1 Hot Wire Probe Velocity Components
- AllI.2 Hot Wire Probe Cascade Velocity Components

LOW SPEED WIND TUNNEL WORKING SECTION AND CASCADE ARRANGEMENT

မ • •

POSITION OF BLADE SURFACE PRESSURE TAPPINGS AT MIDSPAN X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

FIGURE 3.2

POSITIONS OF THE EXPERIMENTAL TRAVERSING SLOTS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

FIGURE 3.3

CASCADE SIGN CONVENTION

CASCADE ENDWALL BOUNDARY LAYER DISTURBER

BE 3.5

DATA ACQUISITION UNIT

FISURE 3.6

PRESSURE PROBE ARRANGEMENT

FIGURE 3."

PROBE TRAVERSING GEAR

. .

τī

DATA ACQUISITION SYSTEM FOR PRESSURE PROBE TRAVERSING

DATA ACQUISITION SYSTEM FOR HOT WIRE PROBE TRAVERSING

• OSCILLOSCOPE CONNECTION POINT FOR SIGNAL VALIDATION

PRESSURE PROBE CALIBRATION MOUNTING

HOT WIRE PROBE CALIBRATION JET

.

FIGURE 3.14

CONDITIONAL SAMPLING OF PRESSURE PROBE DATA

FIGURE 3.16

CONDITIONAL SAMPLING METHOD

NOTE : AT START TOLERANCE (†)=±1%

FIVE-HOLE PROBE DATA ANALYSIS

FIVE-HOLE PROBE \Rightarrow AND ψ AT a=0°

FIGURE 3.19

FIGURE 3.20

A CONTOUR PLOTTING CELL

CELL CO-ORDINATES

a(X(I-1),Y(I-1,J),Z(I-1,J))

b(X(I-1),Y(I-1,J+I),Z(I-1,J+1))

c(X(I),Y(I,J+1),Z(I,J+1))

d(X(I),Y(I,J),Z(I,J))

e (0·5 × (X(I−1) + X(I)),0·25 × (Y(I−1, J) + Y(I−1, J+1) + Y(I, J+1) + Y(I, J)),0·25 × (Z(I−1, J) + Z(I−1, J+1) + Z(I, J+1) + Z(I, J))) NOTE:

THICK LINE PLOTTING ALGORITHM

A VECTOR SCALING CELL

	!_	-!20	1(00 -	80	-00	_4() -	·20	0	20	D	40	60	5	0	100	! 20	1	40
0	₹ ₩			<u>二</u> 二 二											<u> </u>				II.	<u></u> ≢
20	_ <u></u> <u></u>	ŧ		Ŧ	з-пu ‡	±	‡	±	ŧ	ŧ	ŧ	ŧ	‡	1	ŧ	ŧ	ŧ	ŧ	ŧ	Ŧ
40	+		AB RE		5-HO 3-60		OBE D													-
1		-120	-!	00	80	60	_4	0.	-20	0	2	0	40	60	8	0	100	120	!	40
-				1				1				L				.I		l		
0											+ + +									#
20	+	- ‡	+	+ =	÷	+	+	÷	÷ ±	ŧ	÷ ±	÷ ±	÷ ±	÷ ±	÷	÷	÷	÷ ±	÷	+
40	++ + +	- + + +	+++++	+ + +	+ + +	+ + +	+ + +	+ +	+ + +	- + +	+ + +	- + +	+ + +	+ + +	• + +	- + +	++++	++++	++++	+++++
	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
60	+	- +	+	+	+	• +	+	+	+	+	• +	+	, +	+	+	+	+	+	+	-+
	+	- , +	+	+	+	- -+	- -	+	т +		+	+	+	+	+	+	+	+	+	+ -+
80		+ - +	+	+ -	+	+	+	+ -	+	+ -	+	+	+	+	+	+	+	+	+	+
100	0 +}	- +	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	-+
120	0+	- +	÷	+	÷	+	÷	÷	÷	+	+	+	÷	+	+	+	÷	+	+	-+
14(0+	- +	Ŧ	+	+	÷	+	+	+	+	+	÷	÷	+	+	+	+	+	+	-+
16	0+	- +	÷	+	+	+	+	÷	+	+	+	÷	+	+	+	+	+	÷	+	-+
18	۰+	- +	÷	+	+	+	÷	÷	+	+	+	÷	÷	÷	÷	÷	÷	÷	+	-+
20	0+	- +	+	+	+	+	÷	+	÷	÷	÷	÷	+	+	÷	÷	÷	÷	+	-+
22	0+	- +	+	+	+	+	÷	+	+	+	+	+	+	÷	+	+	+	+	+	-+
	_	I	+	I			MANU	JALL I	1016	RPULA	IED L	ATA I	+ EX		DLATE	D DAT	`A :	ł		ł
			X Y	-AXIS -AXIS	SP.	NGENT: ANVIS	IAL C E CO-	0~0R 0RD1	DINAT NATE	e fro From	im tr <i>i</i> Persf	NILIN PEX E	IG EDO INDVAL	E DAT	"UM (1)	MM)				
			Ÿ	LYIC		NCENT'			AIEK											

SLOT 1 EXPERIMENTAL DATA POINTS NATURAL INLET BOUNDARY LAYER

----- 44° YAW ANGLE CONTOUR

CROSS FLOW ANGLE = ϵ (LOCAL) - ϵ (MIDSPAN) = -ve OVERTURNING ANGLE

··		T					1							Ē	<u>, </u>		
			NA11111		54 1111							Ĩ					
											¥	i-0	3804	3 370 4	-5 VO	738	
											¥	TAQ	38099	i 370H	-2 34	06V	
i	091	07i	150	(<u>)0 i</u>	0	3	09	0	<u>ታ</u>	50		c	-50	09-	09-	08
		·		<u></u>					·····								•
			××+	# + +	× + +	+ + +	+++++	+++++	+++++	+ + +	+++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++			
		1	++++	+++	++++	+++	+++	+ +	++	++++	+++++	+++-	++++	+			-
			++	++	+++++++++++++++++++++++++++++++++++++++	+	++	+++	++	++	+++	++++	+++++	++++			-
			++++++	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++			
			+++++++++++++++++++++++++++++++++++++++	÷ +	÷	÷	÷ +	+++++++++++++++++++++++++++++++++++++++	÷ +	++	++	+++	++	+			
			+	+	+ +	+ +	+	++	+	+ +	+ +	+++++++++++++++++++++++++++++++++++++++	++	+			
			+	÷	÷	+	+	+	+	+	+	+	+	+			
			+	÷	+	+	+	+	+	+	÷	+-	+	+			-
			+	+	+	+	+	+	+	+	÷	÷	+	+			
			÷	÷	+	÷	+	+	+	+	÷	÷	+	+			1
			÷	÷	÷	÷	+	+	+	÷	+	÷	+	+			-
			+	+	+	+	+	+-	+	+	+	+	+	+			-
			÷	+	÷	+	+	÷	+	÷	+	÷	+	+			_
			Ŧ	÷	+	+	÷	+	+	+	÷	+	+	+			-
			÷	÷	+	÷	+	+	+	+	+	÷	+	+			
	•	v : vr	;		t Nation	•	V V	:	;		1	!		. 1	i	1	,

SLOT 2 EVPERIMENTAL DATA POINTS

SLOT 2 TOTAL PRESSURE LOSS COEFFICIENT ((POI-POLOCAL) / (POI-PI)) CONTOURS NATURAL INLET BOUNDARY LAYER

ţ

		N/ X- Y.	AXIS	INLE TANG SPAN	T BO ENTI. VISE		RY (0-Of	LAYE RDIN	R ATE	FRO	M IQ	AIL:		DCE	: DA	TUM (M	im)		
			PROBE	DATA	жлэс Х	MANU	ALL	Y IN	TERF		TED	DAT		EXT	. (M 1940	M) DLATED	DATA		
220	- '	·	i		۱ +	; +	+	۱ +	÷	' +	۱ ب	÷	۱ +	÷	; +	+	ł	i	-
200	-				÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	+			-
180	-				÷	+	-+	÷	÷	÷	÷	÷	÷	÷	÷	÷			-
160	-				+	+	+	+	+	÷	÷	+	+	+	÷	+			-
! 40	-				÷	÷	÷	÷	+	- ļ -	÷	-	+	÷	÷	÷			_
120	-				. +	÷	÷	÷	÷	÷	÷	÷	-	÷	÷	+			_
					+	+	÷	÷	÷	+	÷	÷	÷	÷	4	+			
100	F				+	+	+	+	÷	+	+	÷	+	+	÷	+			-
80					+	+	+	+	+	+	+	+	+	+	+	+			
60	Γ				+	+	+	+	+	+	+	+	+	+	+	+			-
ó0	-				+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++	++++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	* *			-
40	-				+++++++++++++++++++++++++++++++++++++++	-+++	+++++	++++	+++++	++++++	·+++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	****	* * * *			-
20	-				++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		-+++	+	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	- + + + +	****	* * *			
0					÷	<u>+</u>		Ţ.	<u>+</u>	÷	÷	×	+	+	÷	÷			
•		1	1			I		,		ı			· · · ·		<u>.</u>	.	. <u> </u>		
	-60	-40	-20	0		20	4	40	6	0	80		100	1	20	140	160	190	200
	1																		
40	╞	.45	OVE 5-	HOLE	PRO	9E [DATA												-
	l	BE	LOW 3-	HOLE	PRO	BE 1	DATA												
20	F			1	ŧ	ŧ	Ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧι			-
^										1					1	ŧ			
U		3	1									<u>×</u>					,	·	
	ó0	-40	-20	0		20	4	0	60)	80		100	1	20	140	160	150	200

SLOT 3 EXPERIMENTAL DATA POINTS

× PASSAGE VORTEX CENTRE

SLOT 4 EXPERIMENTAL DATA POINTS

V.

.

× PASSAGE VORTEX CENTRE

		M X	ALURA	L INLE TANGI	F BOL	JNDA!	1 YS An_r	AYE	R	FDO	мт		TNC	50	^ - - -		15.4 J. 1.4 K				
		Ý	-AXIS	SPAN	/ISE	CO-1	DRDI	NAT	EFF	ROM	PER	SPE)	(EN		uc L LL	JA ! C (MM)	im (mr	1)			
	1 1		+ PRUS	E DATA	XM	IANU)	NLLY	<u> </u>]N	TERF	POLA	TED	DAT	۲ ۸	+ E	XTR	POL	ATED	DATA			
220	+				+	+	+	+	+	.+	+	+	+	÷	+	+		i	i	•	-
200	-				+	÷	÷	+	Ŧ	÷	+	+	+	÷	+	÷					-
180	-				+	+	+	+	+	+	+	+	÷	÷	÷	+					_
160	-				+	+	÷	+	+	+	+	+	+	-+-	+	+					-
140	-				+	+	÷	+	+	+	÷	+	÷	+	+	÷					-
100					+	+	+	+	+	+	+	+	+	Ŧ	÷	+					
120	F				+	+	+	+	+	+	+	+	+	+	+	+					-
100					+	+	+	+	+	+	+	+	+	+	÷	+					
100	F				+	+	+	+	+	+	+	+	+	+	+	+					-
90	1				+	+	+	+	+	+	+	+	+	+	÷	+					
80	F					++	+++	++	++++	+++++++++++++++++++++++++++++++++++++++	+++	++	+++	+++++++++++++++++++++++++++++++++++++++	++	+					-
60	-					+ + + + +	++++++	++++	+++++	++++	+++×-	++++-	++++-	++++-	++++++	****					-
40	-					+++++++++++++++++++++++++++++++++++++++	+++++	++++	+ + + +	-+++	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++-	****	++++					-
20	┢					+++++	+++++	++++	+ + + +	+ + + + + + + + + + + + + + + + + + +	++++	++++	+++++	++++	* + + + -	****					-
0					Ŧ	Ŧ	*	+	+	Ŧ	Ŧ	Ŧ	÷	+	÷	+					
Ū		1		1		1		11					L		L.,		- 4	1	1	1	-
	-80	-60	-40	20		0	20	כ	4()	60		80		100		120	140	160	180	-
40	╞	A	BOVE	5-HOLE	PRD	BE D	ATA														-
		51	ELOV	3-hOLE	PRO	BE D	ATA														
20	F			i	¥	Ŧ	ŧ	ŧ	ŧ	Ŧ	ŧ	ŧ	ŧ	ŧ	Ŧ	ŧ	1			•	-
					Ī	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ī	Ŧ	Ŧ	Ŧ					
0		<u>.</u>					#	<u></u>	<u>=</u>	#	<u></u>		¥	<u></u>		<u> </u>			• • •	÷	-
		0	1			 1	20	<u>ا</u>	ر ۵۸)	60		90	,	100		120	140	160	180	-
	-00	- ~V	-40	-20	,		۲2	•	-10	•	00		55		.00						

SLOT 5 EXPERIMENTAL DATA POINTS

•

× PASSAGE VORTEX CENTRE

SLOT 6 EXPERIMENTAL DATA POINTS

SLOT 6 TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS

× PASSAGE VORTEX CENTRE

			NATURA K-AXIS Y-AXIS + PROB	L I T E D	NLET TANGEN PANVI DATA	SOUNI SE CI	DARY CO DDR NUAL	LAY DRDI DINA LY 1	FR NATE TE FF NTERF	FRO	M TR PERSI	ATLII PEX E DATA	NG E	DGE ! ALL EXTR	DATUM (MM) APOLATE	(MM)			
220	Ľ	ı	ı	ļ	۰ ۱	؛ •		•			+	1		1	I.	1 1			
220					-†-	+	+	÷	+	÷	+	÷	÷	+	+ +				•
200					+	+	+	-	Ŧ	т	-	-		-					
					·	•	•	•	•	•		T	Ŧ	·	T T				-
'80	-				÷	+	÷	÷	÷	÷	÷	÷	÷	+	+ +				-
160	-				÷	÷	+	+	÷	-+-	÷	+	÷	+	+ +				_
					+	÷	÷	÷	÷	÷	+	÷	÷	÷	+ +				
140	+			ĺ	÷	÷	+	÷	+	÷	÷	+	-+	÷	+ +				-
					+	-+-	+	+	- !-	÷	÷	÷	÷	+	+ +				
120	-				÷	+	+	- + -	+	+	÷	÷	÷	÷	+ +				
					+	+	÷	÷	÷	÷	+	+	+	÷	+ +				
100	\mathbf{F}				+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	+ +	+ +	+ + + +				-
20					++	++++	+ +	++	++	+ +	++	+	++	+++	+ + +				
80	F				++	++	++	++	++	+ +	+++	++++	+	++	+ +				-
					++	++++	++++	+	++	+++	+++++++++++++++++++++++++++++++++++++++	+	++	+	+ + + +				
ó0	F				*	+++	++	+	++	++	++	+	+	++	+ + +				-
					*	++	+ +	++	+ +	++	++	++	++++	++	+ + +				
40	F				*	*	+ +	+	+	++	+	++	+	+	+ + +				-
					*	+++++++++++++++++++++++++++++++++++++++	+ +	+ +	++	++++	++	+++	++++	++	+ +				
20					++	+++++++++++++++++++++++++++++++++++++++	+ +	++	++++	++	+++	++	++++	++++	+ + +				-
-					+	+	+ +	+ +	+ +	++	+ +	++	+++	+	+ + +				
0							·												
	-!80	-160	140		-120	-100		30	-60		40	-20)	0	20	40	60	80	
	1																		
40			BOVE	5_1	HO: E P	PDDBF	-	A											_
				3_1	HOLE		ייים. גיים י	'A											-
20	L			J-1		+	. <u>.</u>		-	Ŧ	Ŧ	+	-	-					_
20					Ŧ	ŧ	ŧ	Ŧ	ŧ	Ŧ	ŧ	ŧ	ŧ	ŧ	ΞŦ				-
0																			
J	,	1																	
	-!80	-160	140		120	-100		0			40	20		0	20	40	60	S 0	

SLOT 7 EXPERIMENTAL DATA POINTS

× PASSAGE VORTEX CENTRE

BLADE PASSAGE LOSS CORE DEVELOPMENT AND LOCI OF PASSAGE VORTEX CENTRE AND LOSS CORE PEAK

X-AXIS TANGENTIAL CO-ORDINATE FROM BLADE SUCTION SURFACE (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)

PASSAGE VORTEX CENTRE SITUATED AT INTERSECTION OF ZERO SPANWISE AND ZERO CROSS FLOW ANGLE CONTOURS ON EACH PROBE TRAVERSE PLANE

	-240	-22	0 -20	00	180	16	0!	.40	-120		0 _9	 50		-40		20	0		
0			<u> </u>				++++												
20	 -+	ŧ	9670A	3. ‡	-HOLE #	PR08	: AC =	* ±	ŧ	‡	ŧ	ŧ	ŧ	Ŧ	ŧ	Ŧ	ŧ	ŧ	: ± -
40	ŀ		ABOVE	5.	-HOLE	PROB	E DAT	Α											-
	-240	-22	020	00	-180	-16	0 -	40	-120	-10	0 -5	30	-ó0	-40	-	20	0	20	
U		1			1	1	· · · · · ·		1	1		1	1			1	1	1	
0	+	++	+ +	+ +	+	+ +	+++++++++++++++++++++++++++++++++++++++	+ +	+	++	++	++	+	++	+ +	+ +	+ + +	+ + +	+++
20		++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++	++++	+++	+++-	++++	++++	+++	++++	+++++	+++	+++++++++++++++++++++++++++++++++++++++	+++	+++++++++++++++++++++++++++++++++++++++	+ +
40		++++	++++	++++	++++	+++++	+++	++++	++++	++++	++++	++++	+++++	+++++	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++++++++++++++++++++++++++++++++++++
		++	* *	**	++++	++++	-+ +	++++	+++	+++++	+	++	+	+ + +	++++	+ +	+	+	++
60		+++	* *	***	+ + +	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++	++++	++++	++++	++++	**	***	++++	+++++
80		++++	+×**	++++	++++++	+++++	++++	+++++	++++++	++++	++++	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	+++++++++++++++++++++++++++++++++++++++
100	<u>}</u> ++ +	+	+ +	++	+	+	+	+	+	+	++	+ +	++	+ +	+ +	+ +	++++	+ +	+ +
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	т +	+	т +	+
120	<u> </u> +	+	+	+	-+-	+	- - +	- +	+	+	+	+	+	+	+	+	+	+	+
		+ +	- -	+	+	+	+	+	+	+	- + -	+	+	+	+	+	+	+	+-
140		+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+
160	<u></u> ⊢+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+-
180	- +	+	+	+	+	+	+	÷	÷	+	÷	+	+	+	Ŧ	+	÷	+	+-
200	-+	÷	÷	+	÷	+	÷	+	+	+	+	÷	+	÷	÷	+	÷	÷	+
220	} -+	+	+	+	-+-	÷	+	÷	+	+	÷	÷	÷	+	+	+	+	÷	÷
	1 '	;	+ PRO	שם 1	DATA	X MA	NUALI	_Y IN	ITERPO	LATE	DAT	A +	EXTRA	POLA!	TED D	ATA		,	
			X-AXI Y-AXI	S	TANGE!	NTIAL	0-081		INTE FI	ROM 1			DGE D	MUTA	(MM)				
			NATUR	RAL	INLET	BOUN	DARY	LAYE	R										

SLOT 8 EXPERIMENTAL DATA POINTS

SLOT S TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS

	1 1	1	VECT			20 ME		SEC	E FRU	M PE	RSPEX	ENDV	ALL	(MM)					
0	-			·				•	•			ł	í	•		1	1	:	1
)	-																		
	F		-																
		,	-																
I	-	I.																	
		,																	
	- ·	,	,				-		-										
	•		,		-	-	-		-		-		•			,			
	-:	, ,	1	1	1			-		-					•	1	ı t	1	
	1		1	1	1	11			-	-					:	1	1	1	
	-		1	1	1	1	_	-	-	_			:	:	:	1	1	1	
			1	{	1	-	-		-		-				<i>``</i>	1	1	1	
		•	1	X	~		×				•	;	1	1		1	X		
	-;	•	1	N.	11		-	:-	;	1 *		1	1	2	1	ļ	~	11	
	1	-	1		11		-	-	1	1	1	1	1	1			1		
	E	-	1		1			-	_		1	1	1	1			11		
	1		•	11	-				_	_	-	-							
																			-

× PASSAGE VORTEX CENTRE + COUNTER VORTEX CENTRE

1		280	260	-240	2	20	-200	' 80)	-160	140	-12	20 -	100	-90	60		40	-20
0	. #		`````				¥	,			 ,				 ,	_·瑛,	<u>;</u> ,	;	¥
20	-¥					+++++					+++++			+++++				*****	
40	-		ABOVE BELOV	5-H 3-H	ole !	PROB PROB	E DATA E DATA	.											-
	 	280	260	-240) -2	20	-200	18) .	-160	-140	-1	20	100	-50	-60)	40	-20
		1											1	1	<u>_</u>				<u>+</u>
0	+	<u>+</u>	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	÷	+	+
20		+++++	+++++	- + +	- + +	++++	+ + +	- + +	+ + + +	+ + +	+ + +		+++++	+ + +	+ + +	+ + +	+++++	- + +	++++
40		+++++++++++++++++++++++++++++++++++++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+++++	+++-	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++++++++++++++++++++++++++++++++++++
	+ +	++++	++++++	+ + +	+ + +	+++	+++++++++++++++++++++++++++++++++++++++	+ +	-+++	+++++++++++++++++++++++++++++++++++++++	++++	+++	+ + +	++++	++++	+ + +	++++	+ + +	+++++++++++++++++++++++++++++++++++++++
60	+ + +	+++++	+++++	+ + +	* * +	+++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++	++++++	+++++	+++++++++++++++++++++++++++++++++++++++	++++++	+ + + + + +	* + + + +	++++
80	 	++++	+ + +	++++	+ *	-+ ++	+ + +	+ + +	+++	++++	+++++	++++	+	+++	++++	+++	+++	++++	++++
100		+ +	+	+	+++	+	+	+	+ +	+ +	+	+ +	+ +	+ +	+ +	+++++++++++++++++++++++++++++++++++++++	+	+++	+ +
		+	- -	- -	- -	- -	 	- -	+ +	+ -	+ -	+	+	+	+	+	+	+	+
120		+	+ _L	+	+	+	+	+	+	+	+	+	×	+	+	+	+	+	+
140	<u> </u>	+	+	+	+	+	+	+	÷	÷	+	+	+	+	+	+	÷	+	+
	+	+	+	+	+	+	÷	+	÷	÷	+	+	÷	+	÷	÷	÷	+	÷
160	++	+	÷	+	÷	+	+	+	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	+
180	-+	÷	+	÷	+	÷	÷	+	÷	÷	÷	+	÷	÷	÷	÷	÷	÷	÷
200	-+	÷	+	÷	÷	÷	+	+	÷	+	÷	-+-	÷	+	-+-	+	÷	+	+-
220	<u>}-+</u>	÷	+	+	-+-	+	-+-	÷	+	+	+	+	÷	÷	Ŧ	÷	÷	÷	+
	1	ł	+ FRE	1 30	\; \	х m/ т	I	1 201	Ebol	JLA!E	איאט נ איאט נ	•	EXTRA 1	IPOLA	י כפי ו	474	l	1	ł
			Y-AXI		PANWI	SE (0-0RD	INATE	FR		RAILI	ENDV	ALL	(MM)	(mm)				
			NATUR X-AX1	RAL IN IS TA		BOUN	NDARY I		TC 6	EDOM .									

SLOT 9 EXPERIMENTAL DATA POINTS

	Si	LOT 2	VECT	OR PL	_0 <u>7</u> 0	F SEC	ONDA	KĂ AE	LOCIT	IES	(VT (SI	EC)V		:) -VT	(M. °.	•VA 1	LOC! /	VA M	. 5. 13
			NATL X-AN	IRAL :	INLET TANGE	BOUN NTIAL	DAPY C00	LAYE DRDIN	R ATE F	ROM	IRAIL:	ING E	DGE C)ATUM	(MM)				
			VECT	(IS S DR S(SPANW Dale	ISE C 20 ME	ID-ORS	DINAT (SEC	E FRO	im pei 	RSPEX	ENDV	ALL	(MM)					
220		:	1		1	1	:		1	:	:		;	:	:		:	:	:
																			-
200																			
180																-			
160																			
					•		•									•			
140																			·
	1.				,	,	-		-								`		
120	- ·			•	,	~	-		-		-		•						
	•		•	r	1		-	-		•-	-	•	•		`		`	,	-
100				,	1	1		-	_	-		1 1		``	:	-	1	1	1
80				1	1,	1								1 1 1			1	1	1
		-		1	1	1		1 1	1.					1 .			1	1	
60	+		í	1		~	^ .		``````````````````````````````````````		•			•	-		1	1	<u>`</u>
				1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>i i i</i>		-	-	-	-	-	1		-		1	111	
40		-	11	۱ ۱	; ;					 		1	1		;	2	1	11	1
20	-		11		111							11	11	-				1 1 1	
20	-	-		11	11			_	_	-						11	11		
0	·	-					<u> </u>				-		-	•		•	•		••
	!	.280	-260			220	-200	_11	3(`	160	-140	-13	20 -	100	-80	-6(40	-20
			200	•					- •			•				5.		•	

× PASSAGE VORTEX CENTRE

	SLC	DT 10	EXP	ERIME	NTAL	DATA	POIN	TS											
			NAT X-4 Y-4	JRAL KIS KIS KIS	INLET TANGE SPANV	90UN NTIAL ISE C	IDARY CO- CO-OR	LAYEF OPDIN/ DINATE	R NTE F = FRO	Rom 1 M Per	IRAIL RSPEX	ING E	DCE I	DATUM (MM)	(MM)				
	1 -		+ : /			1 P.A. 1	:	LT 2NT 1	וראיט	LA'EL	יאט נ ו	A + !	EXTR/	POLAT	ם כדי י	ATA _	,	:	
220	┝╼	÷	÷	÷	+	÷	÷	÷	+	÷	÷	÷	Ŧ	÷	+	+	+	÷	· -+
200	-+	÷	÷	+	+	÷	÷	÷	÷	÷	÷	+	÷	+	÷	÷	÷	÷	- ḥ
180	-+	+	+	+	+	-+	+	÷	+	+	÷	÷	-	÷	+	÷	÷	+	- !
160	-+	+	+	+	+	÷	÷	÷	+	÷	+	÷	÷	÷	÷	÷	÷	÷	.
!40	++	+	+	+	+	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	+
120	-+	+	+	+	+	÷	+	÷	÷	+	+	÷	+	÷	÷	÷	÷	÷	+
100	-+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
90		+	+	+	+	+	+	+	+	÷	+	+	+	÷	÷	÷	+	+	+
80	<u> </u> ++	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	÷
	+	+	+	+	+	÷	÷	+	+	+	+	+	÷	÷	÷	÷	+	+	+
60	├- . ┾	+	+	+	+	+	÷	+	÷	+	+	+	+	÷	+	÷	÷	÷	+
40 20	-++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	┾╺┽┍┽┍┿┍┿┍┿┍┿┙┥	+ + + + + + + + + + + + + + + + + + + 	+ + + + + + 	┿┽┿┿┿┿┿┿┿	┿┿┿┿┿┿┿ ┽	+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	+++++++++++++	+ + + + + + + + + + + + + + + + + + + 	+ + + + + + + + + + + + + + + + + + + 	+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	*****	+++++++++++++++++++++++++++++++++++++++
0	₩	<u></u>	#					#		<u> </u>	#		<u>₹</u>	<u>₹</u>	_ <u>#</u>	<u> </u>	_ ₩		
	-34(0 -3	320	-300	-28	0:	260	240	22	0:	200	-180	!é	i0 1	. 40	-!20	-10	0	90
40	-		A90V BE'0	/E 5- IV 3-	HOLE	PROB PROB	e dat	ГА ГА											-
20	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ
0	<u></u>	<u></u> 筆	<u>主</u>	1	<u>二</u> 重		1		<u> </u>			二 道							
	34()	320	-300	-28	0:	2ó0	-240	-72	0 -	200	-180	-16	60 1	40	120	-10	- 00	80

× PASSAGE VORTEX CENTRE

	SL	DT 10	VEC	FOR PL	.OT 0	F SEC	ONDA	RY VE	LOCIT	IES	(VT (S	EC) "v	T (LC)	T1VT	(M. F.	1 • VA	(LOC) /	VA M	5.11
			NATU XAX YAX	JRAL ((10 - 1 (15 - 3 FOR ST	INLET TANGE SPANW	BOUN NTIAL ISE C	IDARY CO-(CO-(RI CO-(RI	LAYE! DRDIN, DINATI	R ATE F E FRO	ROM M PE	TRAIL RSFEX	ING E ENDV	DGE I ALL	DATUM (MM)	(MM)				
220	-		1	1		2.9 : IC 1	1	1	:	:	:	:		:	;	:	:		: _
200																			
180	 -																		
160									·										· _
! 4C							-		•										· -
120		`	•		`		-	-	-	-	1	·	`	•	•				/-
100		~	~	-	1	/	_			-	1	1	-		`	-	-	,	!-
80		-	-		/	/		-					1			-		/	1-
60			1	1	``	-			-	-		•		,		,	,	~	
40	1111			~ / /	////			1111	1111	11111	11111	1111	1111	1111	1111			1111	
20	1 11111	1 11111	1 111111				1 Innin		1 111111	1 11/1/10	1 11111		11111.	1 11111	I IIIIIi	"	i IIIIII	i Hilli	
0	34	<u>=</u> 0 -	320	-300	-28	10 -	 260	-240	: : _22	20 -	; 200	: -180	-1 d	50 -	140	 120	-10)0 -	5:

LOSS CORE DEVELOPMENT DOWNSTREAM OF THE BLADE PASSAGE

X-AXIS TANGENTIAL CO-ORDINATE FROM BLADE SUCTION SURFACE OR TANGENTIAL CO-ORDINATE FROM WAKE CENTRE-LINE (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)

LOCI OF PASSAGE VORTEX CENTRE AND LOSS CORE PEAK

X-AXIS TANGENTIAL CO-ORDINATE FROM BLADE SUCTION SURFACE OR TANGENTIAL CO-ORDINATE FROM WAKE CENTRE-LINE (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)

ADDITIONAL POINTS KEY

POINT	SLOT NO.	BOUNDARY LAYER								
		AT CASCADE INLET								
۵	8	THICKENED								
Ь	10	INCREMED	LASS CORE POSITION							
۵	8	THINNED								
с	10									
d	8	THICKENED								
е	10	THICKENED	PASSAGE VORTEX CENTRE							
f	8	THINNED	FASSAGE VORTEX CENTRE							
g	10									

PASSAGE VORTEX CENTRE SITUATED AT INTERSECTION OF ZERO SPANWISE AND ZERO CROSS FLOW ANGLE CONTOURS ON EACH PROBE TRAVERSE PLANE

PITCHWISE MASS MEANED OVERTURNING ANGLE WITHIN THE BLADE PASSAGE

DEVELOPMENT OF AREA MASS AVERAGED TOTAL PRESSURE LOSS COEFFICIENT

X-AXIS PERCENTAGE OF AXIAL CHORD FROM BLADE TRAILING EDGE Y-AXIS AREA MASS AVERAGED TOTAL PRESSURE LOSS COEFFICIENT

INLET BOUNDARY LAYER

- × NATURAL
- + THICKENED
- THINNED

DEVELOPMENT OF SECONDARY LOSSES

X-AXIS PERCENTAGE OF AXIAL CHORD FROM BLADE TRAILING EDGE Y-AXIS SECONDARY TOTAL PRESSURE LOSS COEFFICIENT

NORMALIZED CASCADE MASS FLOW RATE

X-AXIS PERCENTAGE OF AXIAL CHORD FROM BLADE TRAILING EDGE Y-AXIS CASCADE MASS FLOW RATE NORMALIZED USING INLET MASS FLOW (DURHAM DATA NORMALISED USING NATURAL INLET BOUNDARY LAYER DATA)

PLOT ON PLANE 1.0 MM FROM PERSPEX ENDWALL (3-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO'-POLOCAL)/(PO!-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 5.0 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL)/(PO1-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 5.0 MM FROM PERSPEX ENDWALL (3-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO -POLOCAL) / (PO1-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 20.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL)/(PO1-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 20.' MM FROM PERSPEX ENDWALL (3-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO'-POLOCAL)/(PO'-P1)) CONTOURS X-A/IS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

FIGURE 4.89

٠

PLOT ON PLANE 40.0 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 60.0 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 80.0 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO!-POLOCAL)/(PO!-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 100.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL)/(PO1-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 140.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL)/(PO1-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 220.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

.

PLOT ON PLANE 1.0 MM FROM PERSPEX ENDWALL (3-HOLE PROBE DATA) TOTAL VELOCITY MAGNITUDE CONTOURS (CONTOUR UNITS METRES/SEC) X-AXIS TANGENTIAL CO-ONDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 20.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL VELOCITY MAGNITUDE CONTOURS (CONTOUR UNITS METRES/SEC) X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 20.1 MM FROM PERSPEX ENDWALL (3-HOLE PROBE DATA) TOTAL VELOCITY MAGNITUDE CONTOURS (CONTOUR UNITS METRES/SEC) X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 50.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL VELOCITY MAGNITUDE CONTOURS (CONTOUR UNITS METRES/SEC) X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 220.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) TOTAL VELOCITY MAGNITUDE CONTOURS (CONTOUR UNITS METRES/SEC) X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 2.0 MM FROM PERSPEX ENDWALL (3-HOLE PROBE DATA) VECTOR PLOT OF AXIAL AND TANGENTIAL VELOCITIES X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) VECTOR SCALE 40 METRES/SEC

PLOT ON PLANE 4.0 MM FRO: PERSPEX ENDWALL (3-HOLE PROBE DATA) VECTOR PLOT OF A/IAL AND TANGENTIAL VELOCITIES X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) VECTOR SCALE 40 METRES/SEC

PLOT ON PLANE 5.0 MM FROM PERSPEX ENDWALL (3-HOLE PROBE DATA) VECTOR PLOT OF AXIAL AND TANGENTIAL VELOCITIES X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) VECTOR SCALE 40 METRES/SEC

PLOT ON PLANE 15.0 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) VECTOR PLOT OF AXIAL AND TANGENTIAL VELOCITIES X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) VECTOR SCALE 40 METRES/SEC

PLOT ON PLANE 40.0 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) VECTOR PLOT OF AXIAL AND TANGENTIAL VELOCITIES X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) VECTOR SCALE 40 METRES/SEC

PLOT ON PLANE 20.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) SPANWISE ANGLE (PITCH ANGLE) CONTOURS (CONTOUR UNITS DEGREES) X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 20.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) YAW ANGLE CONTOURS (CONTOUR UNITS DEGREES) X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 220.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) SPANWISE ANGLE (PITCH ANGLE) CONTOURS (CONTOUR UNITS DEGREES) X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT GN PLANE 220.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) YAW ANGLE CONTOURS (CONTOUR UNITS DEGREES) X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 1.0 MM FROM PERSPEX ENDWALL (3-HOLE PROBE DATA) STATIC PRESSURE COEFFICIENT ((P1-PLOCAL)/(P01-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

•

PLOT ON PLANE 20.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) STATIC PRESSURE COEFFICIENT ((P1-PLOCAL)/(P01-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 20.1 MM FROM PERSPEX ENDWALL (3-HOLE PROBE DATA) STATIC PRESSURE COEFFICIENT ((P1-PLOCAL) / (P01-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 30.0 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) STATIC PRESSURE COEFFICIENT ((P1-PLOCAL)/(P01-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 60.0 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) STATIC PRESSURE COEFFICIENT ((P1-PLOCAL)/(P01-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT ON PLANE 220.1 MM FROM PERSPEX ENDWALL (5-HOLE PROBE DATA) STATIC PRESSURE COEFFICIENT ((P1-PLOCAL)/(P01-P1)) CONTOURS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

TWO DIMENSIONAL STATIC PRESSURE COEFFICIENT DISTRIBUITON PREDICTED VALUES ((P1-PLOCAL)/(P01-P1)) CONTOURS X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX FNDWALL (MM)

PLOT APPROXIMATELY 93.3 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE AVERAGED TANGENTIAL EXPERIMENTAL POINTS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

PLOT APPROXIMATELY 6.7 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE AVERAGED TANGENTIAL EXPERIMENTAL POINTS X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

			X-A) Y-A) + PP	KIS AX KIS SP ROBE DA	IAL CO-O ANWISE C TA V MA	RDINATE FR D-ORDINATE		LING EDGE ERSPEX END	DATUM (MM) VALL (MM)		•		
	I.	;		1000 0/1	1		LIN ULA:		LIRAFULA	CD DA	^		
		-	i	•	•	• •	•	•	• •	÷	•	•	•
220	<u> </u> -	-		÷	÷	•	÷	÷	•	+	+	· •	
	1												
200													
2.70	r	+		-	بد.	+	+	+	÷	-	÷		-
180	L	+	1	+	Ł.	<i>н</i>							
.05		•		r	-		7	-	-	-	÷	+	-
160	\vdash	÷		+	÷	÷			+		+	*	_
							•		•		,	•	
								÷	+	+	÷		
140	F	+		÷	+	÷	÷	+		+	÷	÷	
			j			÷	÷	÷	+	+	+		
1.20			Ì										
120		+	1	+	+	+	÷	÷	+	+	÷	+	<u></u>
					_								
				+	+	+	+	+	+	+	+		
100		_											
				7	-				7		+	+	-
		+		+	*	•	<u>ــ</u>		÷	11	т 		
	1	·		•	•	-			, +				
80		+		+	÷	•	+	+	+			*	
						•	+	÷	+	•	+		
		÷		· •	٠	٠	۵	÷	+	•	+	+	
				÷	•	•	+	÷	+	•	+		
60	F	÷		+	÷		÷	+	+	•	+	÷	
				+	•	٠	÷	÷	÷	•	+		
		+	1	+	•	•	+	+	÷	•	+	+	
		+		+	÷	٠	•	+	+	+	+	÷	
40		+		÷	•	•	•	÷	+	+	÷	+	-
	1	+		+	•	•	•	+	+	1 +	+	+	
		+		+	•	•	•	+	+	1.1	+	+	
20	1	+		+	•		-	+	÷		÷	+	
	Г	-		-	-			• •	⊤	11	⊤	+	-
	1	T		¥.	+ +	▼	+ +	- +		11	т _	+	
	1	+ +	i	ŝ	•	•	, +	, ,	т +	- 1 ÷	+ ►		
2	L	<u> </u>	l		•	· · · · · · · · · · · · · · · · · · ·		·	·		·	· · ·	
-	1		L.E.							T.E			
	!				<u>I</u>	<u></u>	<u></u>	1	<u>tt.</u>				
	-	-200	-180	-160	-140	-120 -100	-80	-60 -4	0 -20	0	20	40	60

PLOT APPROXIMATELY 93.3 % DF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE EXPERIMENTAL DATA POINTS

		X-4` Y-4`	XIS AX	ANVISE	ORDINA CO-ORD	TE FRO	DM TRAI FROM P	LING E ERSPEX	DGE DA	TUM (MM) LL (MM)				
		+ Pf	ROBE DA	TA 🗙 M	1ANUALL	Y INTE	RPOLAT	ED DAT	X + F	XTRAPOL	TED DA	TA .		
	'		ľ	•		1	٠	1	1	1	1	:	i	1
220	- +		+	۶		÷	÷		+	+	+	÷	÷	-
200	- +		+	+		+	÷		+	+	•	*	÷	
180	- +		+	+		+	+		+	+	+	÷	+	
											1			
160	- +		+	÷		+	÷		+	+	+	*	+	-
		ļ							+	7	*	÷		
!40 F	- +		-	+		+	+		+	+	+	+	+	-
						+	+		÷	+	1			
120 }	- +		+	+		+	+		+	+	+	÷	÷	
			+	+		+	+		+	÷	+	÷		
100	- +		+	+		+	+		+	+	+	+	+	_
									+	+	+	+		
	+		+	+		+	÷		+	+		*	+	
80	- +	1	+	+		+	÷		÷	÷			+	_
						+	+		+	+	+	٠		
	÷		+	+		+	+		+	+	1 †	•	+	
60 L		1	+	- -		÷	÷		-	•	11			
	- F		+	+		+ +	+		т +	•		ž	Ŧ	-
	+		+	÷		÷			+	+	1 +		+	
	+		+	+		+	+		+	•				
40	• •		+	+		+	+		÷	•	+	4		
	+		+	+		+	+		•	•	+	+	+	
	+		+	÷		+	+		+	+	+	*	+	
	+		+	۲		+	+		•	+	+	-	+	
20 -	• +		+	+		+	+		+	+	+	+	+	-
	+		+	+		+	+		+	+		+	+	
	+		÷	+		+	+		+	+	11	+	+	
0 L	т т			т т		·	т 		·	Ŧ			+	
		L.Ę.	1					1			T.(Ξ.,		
·						_								

PLOT APPROXIMATELY 6.7 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE EXPERIMENTAL DATA POINTS

FIGURE 4.127

•

PLOT APPROXIMATELY 93.3 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)

PLOT APPROXIMATELY 85.4 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDVALL (MM)

PLOT APPROXIMATELY 61.9 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)

PLOT APPROXIMATELY 53.9 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANVISE CO-ORDINATE FROM PERSPEX ENDVALL (MM)

PLOT APPROXIMATELY 46.1 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS

PLOT APPROXIMATELY 38.2 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE

PLOT APPROXIMATELY 30.3 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE TOTAL PRESSURE LOSS COEFFICIENT ((PO!-POLOCAL) / (PO:-P!)) CONTOURS

PLOT APPROXIMATELY 22.5 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE TOTAL PRESSURE LOSS COEFFICIENT ((PO1-POLOCAL) / (PO1-P1)) CONTOURS

SPANWISE MIGRATION OF THE LOSS CORE

X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)

> PERCENTAGE OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE

F15 27 4. 42

FIGURE 4.142

		-200	-180	-160	-140	-120	-100	-80	-60	-40	-20	0	20	-	40	60
-			L.E.		<u>1</u>			<u>1</u> _	_		1]	ſ.E.		<u> </u>	
0				`	•		<u>`</u>	<u> </u>		<u> </u>	~					
		_									~		-	/	-	
20	┝	-						Ň			Ň			-	-	-
							``	``		~	~		/	1	-	
		_					~	\sim		\mathbf{i}	~	· ·	/	1	_	
40	Γ		1					Ň		\mathbf{i}				1	_	-
40	1			-				Ň		>	<u>></u>			/	_	
	1			-	×		N	N		\mathbf{N}			/	/	-	
. =	ł			-	~		N .	Ň		~	~		/	/	-	-
60	F						~	~		~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/ ^	1	-	_	_
							~			2	2	· · ·	· ·			
							<u>`</u>	2		>			· ·			
80	F			-	~		>	~		>						-
~~								-		~			/		-	
				-	-		~	~		2	1		,			
100	Г			-	-		~			2	2	- I ·			_	-
100	L															
	1			-	-		-	~		~		.	-			
120	┢	—		~	-		-	-		-		·	-	-		-
							-	-				ŀ	-			
170	Γ			-	-		-	-		-			-		-	-
140										~			-			
													_			
160	F	_			-		_	-		-			_	_	_	-
180	F				-			-					-			-
																-
200				-	-		_	_					-	_	_	_
													-	_	-	-
220		_		_	-	·				•	•	i	•		1	•
	1	1	1	JUN JUN				·····	,							
			1-4. VEC	XIS SP	ANVISE		DINATE	FROM P	ERSPE)	(ENDVA	LL (MM)					

PLOT APPROXIMATELY 93.3 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANWISE (RADIAL) VELOCITIES X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

			VEC	TOR SCA	LE 40 METE	ES/SEC -							
	1	i	i	1	ſ	1 1	1	4 4	I.	ł	1		I I
220	F			- 1						1			
200	L												
200						_							•
100													
100	Г												-
•													
160	F									—			-
	1												
140	F												-
						_	-						
	ł –									-			
120	-						-						-
	ļ												
	1			-	-	-							
100	L.				_								_
							-				-		
										-			
80	L				-		~						
						2	~	1	1				-
					-				1	-			
40				-			>						
80					2	\sim	\sim						-
				_		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~	\sim				
				-	`					1			
40	F			-			N					_	-
						2	\sim					_	
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~			12	_	_	
20	-			-			Ň			1		-	-
				1		$\mathbf{i}$				-	_	-	
						2	2		2	1			
0				<u>``</u>		<u>`</u>		<u> </u>					
			L.E.		_					<b>T.E.</b>			
1		200	100	1/0	140 .	20 100	<u>_</u>	40 10		<u> </u>			<u> </u>
		~200	-150	-100	-140 -1	20 -100	-00	-00 -40	-20	U .	2U 4	iU (	20

# PLOT APPROXIMATELY 85.4 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANWISE (RADIAL) VELOCITIES

#### X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANVISE CO-ORDINATE FROM PERSPEX ENDVALL (MM) VECTOR SCALE 40 METRES/SEC

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
140       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
100             80	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	_
80	
80	
	_
	-
	-
	_
	'n

### PLOT APPROXIMATELY 77.5 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANWISE (RADIAL) VELOCITIES X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)

			VEC	TOR SCA	LE 40 M	ETRES/SEC		PERSPEA	CINDAN	LL (MM)				
	1	1	1	4	1	1	· · ·	-	ı				,	,
220	╞										-	· 	•••••	· -
200	ŀ				_							<b>-</b>		-
180	-													-
160	-							_						-
140														
														-
120	F										-		•	-
100														
100	F													
						_	_	_						•
80	F									_				-
						1								
60	┢					1			-	-		1	-	-
				_		1	1		-	2		2	_	
40	$\mathbf{F}$					1	1			2		2	_	-
							1			1	$\mathbb{R}$	S		
20	-				1	11			-	1	12	1	-	•
•					2				-	1	1	$\sim$		
Ч			L.Ę.	,		t	1 1				Ţ.E	•		
		-200	-180	-160	-140	-120 -1	00 -80	-60	-40	-20	0	20	40	60

### PLOT APPROXIMATELY 69.7 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANVISE (RADIAL) VELOCITIES X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANVISE CO. OPDINATE FROM DEDGOES FOR MULT (MM)

220				VEC	TOR SCA	LE 40 ME	TRES/SEC -		ROPEN ENDW					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1	I		i	1 4		1 I	4		1	1	F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	$\vdash$									L			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-					-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Į									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	$\vdash$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1									-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	180													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1									-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	160	L												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	140													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140	Γ						·						-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	1									1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	Γ												-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	F												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-							
	80	┢												-
60     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </td <td></td>														
	60	F										_	-	_
												-		
	40	F						_			$\sim$	~	2	_
$20 \left[ = \left[ = = = = = = = = = = = = = = = =$		[										~	-	
$20 \mid \Xi \mid \Xi \equiv \Xi$												N		
	20	L				_						~		_
		Γ				-	~	~		~		~		-
								-				~		
	0						-		-	~		~		
й.Е. Т.Е.	v			L.E.							T.E.			
														_
-200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60		•	-200	-180	-160	-140 ·	-120 -100	-80	-60 -40	-20	0 2	<u>'0 4</u>	40 6	50

### PLOT APPROXIMATELY 61.9 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANWISE (RADIAL) VELOCITIES X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)

FIGURE 4.147

		X-A Y-A VEC	XIS AX XIS SP TOR SCA	IAL CO-ORE ANVISE CO- LE 40 METE	DINATE FRO -ORDINATE RES/SEC	FROM PER	NG EDGE DA SPEX ENDVA	ATUM (MM) ALL (MM)				
220	ļ	ł		1	i i	i 	· · ·	۱ 	 	۱ 	۱ 	•
												—
200					<b>-</b>							-
180												-
160												-
140												_
120												-
100												
80												-
60											-	-
40										1	2	
40											1	-
								$\geq$		$\geq$		
20					-		-		$\mathbf{N}$	5	-	-
								1		~	_	
0					<u> </u>							
		L.Ę.		<u>1</u> _	11		1			<u> </u>	1	
	-200	-180	-160	-140 -1	20 -100	80	-60 -40	-20	0 2	20 4	0 6	50

.

PLOT APPROXIMATELY 53.9 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANWISE (RADIAL) VELOCITIES

			Y-A VEC	XIS SP	ANVISE COLE 40 MET	-ORDINATE	FROM PE	RSPEX ENDV	ALL (MM)				
	1	1	1	1		1 1		-					
220	$\left  \right $		,			·		• •	<del>-</del>		'	'	· -
200	-	<u> </u>							·				-
180	-												-
160	-												-
140		·											
													-
120	F												
100	+												-
													)
80	F								<del>-</del>				-
<b>6</b> 0	ł												
00													-
40											1	1	-
										11	1	1	
20	F			=					1	1	2	1	-
							11				1	1	
0	┝		L.E.							 T.E.			<u></u>
	!	-200	-180	-160	-140 -	120 -100	-80	-60 -40	-20	0	20	40	<u> </u>
					· · <del>•</del>					-			

PLOT APPROXIMATELY 46.1 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANWISE (RADIAL) VELOCITIES X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

			X-A Y-A VEC	XIS AX XIS SP. TOR SCA	IAL CO-O ANVISE C LE 40 ME	RDINATE FRO 0-ORDINATE TRES/SEC —	FROM PER	NG EDGE DA	NTUM (MM) NEL (MM)				
	1	1	1	. 1	1	i i	•	i I	ı	1	1	i	4
220	┢					·····	·			-			-
200	-												-
180	-												-
160	F												-
140												·	-
	ĺ					<b></b>							
120	F										<b></b>		
100	-								·				-
80	F				<b>-</b>								-
40												-	
00													-
						<b>_</b>							
40													
40											-	2	-
											-	~	
~~													
20	F								$\geq$		2	2	-
										-	-	-	
•					·		-			-			
0		1	L.Ę.				L			Ţ.E.	L	1	
		-200	-180	-160	-140	-120 -100	-80	-60 -40	-20	0	20	40 (	50

PLOT APPROXIMATELY 38.2 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANWISE (RADIAL) VELOCITIES



PLOT APPROXIMATELY 30.3 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANVISE (RADIAL) VELOCITIES

			1		ł	l i	1	1 1	i i	i	1	ł	
220													-
200	-	_											-
180	-								_	_			-
160	ł									_			-
140										-			
140	_									-			-
120		_								-			
20										-			
100	-									-		-	
										_			-
an		_								=			
ן יי	-									=			-
<u>دہ</u>										_	_		
~ [	-									=	_	_	-
									1	=	_	_	
~ [		_						_	1	=			_
20		_						7,	1	-	_		
	-	_					1	1	1	-	_		-
, L		-		<del></del>		-		<u> </u>	1	-	-	-	
ſ			L.E.							T.E.			

PLOT APPROXIMATELY 22.5 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANWISE (RADIAL) VELOCITIES X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDVALL (MM)

			Y-A) VEC	KIS SP TOR SCA	ANVISE (	CO-ORDINATE ETRES/SEC _	FROM PE	RSPEX ENDV	ALL (MM)				
	1	1	1	1	ì	F I	i	i i	ŧ	ł	4	ı	i
220	$\vdash$	-						_	-	-			-
										·			
200													
									_		_		-
100													
180	F	-	1										-
	1												
160	F	-											-
	ł												
140		_											
140	Γ	-							_	-		_	
						······				-			
120	$\vdash$			-						-			-
										1-			
100	L	_								_	_		_
			1							-	_		_
		-								12	1		
80	-	-								11	1	/	-
								_	1	-	1	/	
60	L.							_	1	11	1	_	_
									1	-	-		
		_		_				_	1	11	-		
40	-							/	1	-	-		
		-					_	/	1	-		-	
			1				_	1			-	_	
20	-	_				_	1	1			_	_	-
		-	I				1	1	1	-	-	~	
				_		_	/	/	/	-		-	
0		•				•==•							
										T.F			
1		1					. 1	1L	<u>t</u> t		<u></u>	L	

## PLOT APPROXIMATELY 14.6 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANWISE (RADIAL) VELOCITIES X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

			X-A) Y-A)	KIS AX	IAL CO-ORI	ONATE FRO	OM TRAIL	ING EDGE DA	TUM (MM)	1)			
	i i	1	VEL:	IUR JUN		(E3/3E) =							
220	-	-						_		İ-	·	' -	'-
200	-							_		-	_		-
180	-			-				_		-	_	_	
160	-							_		-	_	_	
									-	- 1			
140	$\mathbf{F}$	-								-		-	-
										-			
120	-									-	-	-	-
										-	-		
100	$\left  \right $	-								1	1	-	-
		-							-	1	1	/	
80	$\mathbf{F}$	-						_	1	1	1	/	-
									1	1	1	/	
60	L								1	11	1	/	
								-	1,	1	1		
				_			_	1	1		1		
40	$\mathbf{F}$	-					1	1,		1	-		-
		_		_			1	1	1 1		1	_	
20		-				_	1	/, /	' ',		-	-	
20	Γ	-		_		_	1	1/	1		-		-
		-	ľ	-		-	1	2	1	-	-		
0								́/					
		1	L.E.	1	1	<u>.                                    </u>			<b>i</b> i		Ē.	1	
		-200	-180	-160	-140 -1	20 -100	-80	-60 / -40	-20	0	20	40	60
			SF SE		ATIVE SU FION LINE	CTION SU	JRFACE						

PLOT APPROXIMATELY 6.7 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE VECTOR PLOT OF AXIAL AND SPANWISE (RADIAL) VELOCITIES



# ZERO CROSS FLOW ANGLE CONTOURS CLOSE TO THE BLADE SUCTION SURFACE

X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)

> PERCENTAGE OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE

0-00	30·3
	22.5
	14 · 6
	6.7





FIGURE 4.157



PLOT APPROXIMATELY 53.9 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE STATIC PRESSURE COEFFICIENT ( (P1-PLOCAL) / (P01-P1) ) CONTOURS X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANVISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)

I

-0.4

L.E

-200

ı

# FIGURE 4.158

ı

I



PLOT APPROXIMATELY 38.2 % OF BLADE PITCH LESS THICKNESS FROM SUCTION SURFACE STATIC PRESSURE COEFFICIENT ( (P1-PLOCAL) / (P01-P1) ) CONTOURS

FIGURE 4.159



FIGURE 4.160



### SLADE SURFACE STATIC PRESSURE COEFFICIENT DISTRIBUTION (SHOWING DATA FROM ADJACENT PASSAGES) NATURAL BOUNDARY LAYER DATA

X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

Y-AXIS STATIC PRESSURE COEFFICIENT ( (P1-PLOCAL) / (P01-P1) )



.

# BLADE SURFACE STATIC PRESSURE COEFFICIENT DISTRIBUTION

## NATURAL BOUNDARY LAYER DATA

X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

Y-AXIS STATIC PRESSURE COEFFICIENT ( (P1-PL_CAL)/(P01-P1) )



220 -	•	•			-RUM PE	RSPEX	WALL	×S	PANN	ISE	DAT		ROM	SLOT	TED J	ALL	
					• • •	·+·	÷.	÷	; ÷	الج	+	- <b>+</b> I	• +	Ì	1	1	1
200 -			;	× × - +	× ×	× +	× +	× +	× +	× +	× +	× +	× +				
180 -																	
!60 -			>	< x	× +	× +	×	× +	×	×	×	×	×				
140 -							·		•	•	•	·	•				
!20																	
100 -			> +	< × +	× +	× +	× +	<b>×</b> +	× +	× +	× +	× +	× +				
80			+	+	÷	÷	÷	÷	+	+	+	+	÷				
60			5	< ⁺ ×	;	ţ	ż	¥	¥	¥	×	×	¥				
40			+	÷	+	+	+	+	+	+	+	+	+				
20 -			+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +				
			+	+	+	+	+	+	+	+	+	+	+				
		<b>L.</b> <u><u><u></u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>	<u> </u>						L	1_		1		T	.E.	:	

PLOT ON BLADE PRESSURE SURFACE LOCATION OF BLADE SURFACE STATIC PRESSURE TAPPINGS X-AXIS AXIAL CO-ORDINATE FROM TRAILING FR

•

	LOCA	T] ON	0F	BLA	DE S	SURFA	CE S	TATIC P	RESSUR	RE TA		GS										
			X-A Y-A + S	XIS XIS PAN	۸۱ SP VISE	(IAL PANWI E DAT	CD-DI SE CI	PDINATE 9-ORDIN 0M PERS	FROM	TRATE		ED( EX (	GE U END		UM L	۲) (MM)	1M) 1) 20M	c:				
220	-		ł	+	+	+	i +	: +	1 +	; +			+	1+	+	-#	+	+		i i	:	، 
200	-			× +	× +	× +	× +	×	× +	× +	/ +	× +	× +	× +	ノ +	× +	× +	× +				_
180	-																					-
160	-			X	×	×	×	×	×	/	×	×	×	×	×	×	×	×				
140	-			Ŧ	Ŧ	Ŧ	+	-	- +	+	+	+	+	Ŧ	+	+	+	+				
120	-																					-
100	-			× +	× +	× +	× +	× +	× +	× +	/ +	× +	× +	× +	× +	× +	× +	\ +				
80	-			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				-
60	-			¥	¥	ţ	ţ	×	¥	¥	ţ	*	¥	×	¥	¥	¥	+×				-
40	-			+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+				-
20	-			+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+				
0		<u> </u>		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<b>.</b>			
		<u>ــــــــــــــــــــــــــــــــــــ</u>	. E.							<u>.</u>						<u>.</u>			1.2.	<u> </u>		
	-20	0 -	-180	••	160	_ 14	0 -	-120 -	100 -	80	60		-40	)	-4	20		0	2	20	40	60

PLOT ON BLADE SUCTION SURFACE





•



SLOT 1 HOT WIRE EXPERIMENTAL DATA POINTS

TRAVERSING SESSIONS

! PROBE TIP CHANGE

X-AXIS Y-AXIS



SLOT 1 TOTAL VELOCITY MAGNITUDE CONTOURS (CONTOUR UNITS METRES/SEC)



SLOT 1 YAW ANGLE CONTOURS (CONTOUR UNITS DEGREES)



FIGURE

ເກ 4



SLOT 1 STREAMWISE SPANWISE ANGLE CONTOURS (CONTOUR UNITS DEGREES)



SLOT 1 STREAMWISE SPANWISE ANGLE CONTOURS (CONTOUR UNITS DEGREES) X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (AM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM) CONTOURS OBTAINED FROM HOT-WIRE MEAN VELOCITY DATA



# SLOT 1 NORMALIZED TURBULENT KINETIC ENERGY CONTOURS



SLOT ! TURBULENCE INTENSITY CONTOURS FOR U DASH

FIGURE 5.8



SLOT 1 TURBULENCE INTENSITY CONTOURS FOR V DASH


SLOT 1 TURBULENCE INTENSITY CONTOURS FOR V DASH

=

## X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM) CONTOURS NORMALIZED USING UPSTREAM REFERENCE VELOCITY







SLOT 1 NORMALIZED SHEAR STRESS CONTOURS (FROM UV CORRELATION)

X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM) CONTOURS NORMALIZED USING UPSTREAM REFERENCE DYNAMIC HEAD



SLOT 1 NORMALIZED SHEAR STRESS CONTOURS (FROM UW CORRELATION)

220		: >	KY F	: PROB	ES		1	1	1			1	:	:		i	:	:	
		>	KZ F	ROB	ES														-
200	++	+	*	+	÷	+	+	+	+	- <b>-</b> -	+	+	-+-	+	+	+	+	+	- <b></b> -
180	+	+	+	÷	+	÷	÷	+	+	÷	+	+	÷	÷	+	+	÷	+	÷-
160	-+	+	+	÷	+	÷	÷	÷	- <u>+</u> -	+	÷	÷	+	+	÷	+	÷	+	+-
	+	÷		+	+	+	+	÷	+	+	÷	+	+	÷	+	÷	+	÷	+
140	-+	+	+	+	+	+	+	+	÷	+	- <del>!</del> -	+	+	+	÷	+	÷	+	+-
	+	+	+	+	+	+	+	÷	+	+	+	+	÷	÷	+	+	+	+	÷
120	<b>}-+</b>	+	+	+	+	+	+	+	+	÷	-+-	+	+	+	+	+	+	+	+-
	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+
100	++	+	++	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+++	+	+- +
80	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	++	++	++	++	+	+++++	++	++++	++++	++	+	+	++	++
00	+	+	+	*	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	*	++++	+-+
60	Ē	+	Ŧ	*	+	Ŧ	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	÷	÷	+	+
	+	+	+	*	+	*	+	+	+		+	+	+	Ť	+	Ŧ	*	÷	+-
40		+	÷	÷	+	*	+	+	+		+	+	+	+	Ť	Ť	÷	Ť	+
		+	÷	÷	+	+	+		+	÷ +	÷	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+
20	L±	+ +	+	+++++++++++++++++++++++++++++++++++++++	+	+	÷	÷	+		++++	÷	+	÷	÷	+	+	÷	+
		÷ +	+ +	+	÷ +	÷ +	+	÷	+ +	÷	+ +	+	+ +	+ +	÷ +	÷	÷	÷	÷
0	+	÷	÷	÷	+	÷	÷	÷	+	÷	+	<u>+</u>	÷	+	÷	÷	÷	÷	÷
	<u> </u>			<u>.</u>	1			1	1	<u> </u>			1			. 1	L	!	
	-240	22	0 -2	200	180	16	0 -	40	-'20	10	08	30	60	40	-2	20	0	- 20	

SLOT 8 HOT WIRE EXPERIMENTAL DATA POINTS

X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILINC EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM) + DATA POINT + IMAGINARY ROOT FOR ONE UBAR OTHER VALUED USED

•



SLOT 8 TOTAL VELOCITY MAGNITUDE CONTOURS (CONTOUR UNITS METRES/SEC)



SLOT 8 YAW ANGLE CONFOURS (CONTOUR UNITS DEGREES)







SLOT 8 NORMALIZED TURBULENT KINETIC ENERGY CONTOURS



SLOT S FURBULENCE INTENSITY CONTOURS FOR U DASH



SLOT 8 TURBULENCE INTENSITY CONTOURS FOR V DASH X-AXIS TANGENTIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM) CONTOURS NORMALIZED USING UPSTREAM REFERENCE VELOCITY



SLOT 8 TURBULENCE INTENSITY CONTOURS FOR V DASH







SLOT 8 NORMALIZED SHEAR STRESS CONTOURS (FROM UV CORRELATION)



SLOT 8 NORMALIZED SHEAR STRESS CONTOURS (FROM UV CORRELATION)

	i	-120	-10	)0 -1	80	-60	4(	0.	-20	0	2	0	40	60	8	0	100	120	1	40
0	<b>₽</b>	 	<u>+</u>	_ <u>_</u>	_ <u>∓</u>	_ <b>.</b>		 	<u>‡</u>		<b></b>			<u></u>	<u>+</u>			<u> </u>	ŧ	
20	₽	· ŧ	ŧ	±	±	±	ŧ	±	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	Ŧ
JU	Γ	-	BE		3-H0	LE PR	OBE I													-
40	1	_		INF	5_40															
	-	-120	-!(	, 00 –	80	-60	-4	0	-20	, 0	2	0	40	60	8	0	100	120	١	40
0		•	· ·		•	•	·		·			· · · · · · · · · · · · · · · · · · ·	•	•		·		•	•	<u> </u> '
	++++	+++++++++++++++++++++++++++++++++++++++	+++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++
20	+++++++++++++++++++++++++++++++++++++++	+ + - +	+ + +	+++++	+++++	+ + +	++++++	+++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+++++	+++++	+++++++++++++++++++++++++++++++++++++++
40	++	- + +	+	++++	+++++++++++++++++++++++++++++++++++++++	+++	+	+ +	++	++++	- + +	++++	+	+++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++	++++	++++
	+++++++++++++++++++++++++++++++++++++++	+ + -	++	+ + +	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	++	+	+	+		+++++++++++++++++++++++++++++++++++++++	+	+	++++	++
60	+++++++++++++++++++++++++++++++++++++++	+ + - +	+ + +	+++++	+++	+ +	+++	+++	+++++	+ +	++	+++++++++++++++++++++++++++++++++++++++	++++	+ +	+++++	+	+++++	+++++++++++++++++++++++++++++++++++++++	+	++
80	+	- +	+	÷	+	+	+	÷	÷	+	÷	+	+	+	+	÷	÷	+	+	+
	+	+	+	÷	×	+	+	+	÷	÷	+	+	÷	+	÷	+	+	÷	+	+
100	+۰	- +	+	+	+	÷	+	÷	÷	+	+	+	+	÷	+	+	+	+	+	<b>-</b> +
	+	+	+	+	÷	+	+	+	+	+	• •	+	+	÷	÷	, +	. <b>+</b>	+	+	+
120	0+	- +	+	+	+	+	+	+	+	÷	+	÷	÷	+	÷	-	+	+	+	+-
14(	0+	- +	+	÷	+	÷	÷	+	÷	÷	+	-+	÷	÷	÷	÷	÷	÷	÷	<b>+</b>
16	0+	- +	+	+	÷	÷	+	+	+	÷	+	+	+	÷	÷	÷	÷	÷	+	-+
18	0+	- +	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	+	÷	÷	÷	+
20	0÷	- +	+	÷	+	+	+	÷	÷	+	÷	Ŧ	÷	÷	÷	÷	÷	÷	÷	-+
22	0+	- +	Ŧ	+	+	÷	+	Ŧ	+	+	+	+	+	+	÷	+	÷	; +	÷	; +
	1	<b>1</b> 1	X Y +	-AXIS -AXIS PROB	TAN SP/ E DAT	NGENTI ANVISE FA X	IA C E CO MANU	O-OR ORDI	DINAT NATE INTE	E FRO FROM RPOLA	m tr/ Persf Ted 1	NILIN PEX E DATA	G EDC NDVAL	E DAT L (MM TRAPO	UM (I ) LATEI	MM) D D A T	Ą			
			T	HICKE	NED	INLET	BOUN	DARY	LAYE	R										

SLOT I EXPERIMENTAL DATA POINTS

FIGURE 6.1

.







----- 44° YAW ANGLE CONTOUR

FIGURE 6.4



----- 44° YAW ANGLE CONTOUR







SLOT 8 TOTAL PRESSURE LOSS COEFFICIENT ( (PO1-POLOCAL) / (PO1-P1) ) CONTOURS

FIGURE 6.8



SLOT 8 COMPARISON OF THE THREE INLET BOUNDARY LAYER LOSS CORES

X-AXIS TANGENTIAL CO-ORDINATE FROM WAKE CENTRE-LINE (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)



1111日前日 6.10

	1111	111.	+.	////	111						111	1111	1111	1111	1	+	////	1111	111
	1			~ ~ ~	111	111			111	111	11	11	11	1		1,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	111	111
		;	1	, , ,		111	-	-				.,				1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	111	```
		1	11	ĺ		1	- - - >				•	, , ,	L L	х 1		11.			
)			11	11	11	111	111	111	1 1 1	-	- : •	•••••	× × ×	N N N		11	11	11	
		\ \ \	1	1	1	11	111	1 1 1							· · · · · · · · · · · · · · · · · · ·	1		1	
0	Ĺ	1 1	-	1	,	,	-	-	-	-	-		•	````	•	,	۰ ۱	,	
20	<u>ا</u>	:	-	;	,	1	-	-	-	~	••		、	•	•	7	١	;	/-
	۰.	÷	-		,	÷	-	-	-	••	-				•				-
0			-		,		-		-										
60	╞		_																-
0			-																-
20																			
00	Ļ			,															_
20	-															•	•	•	_
	1 1		VECT	OR S	CALE	20 ME	TRES	/SEC		-	ко-ел 1		۲ <b>۸</b> LL	(1111)					
			X-A) Y-A)	(15 (15		NTIAL			IATE F	ROM		ING E	EDGE	DATUM	(MM)	1			
									THU										

X PASSAGE VORTEX CENTRE
+ COUNTER VORTEX CENTRES

X PASSAGE VORTEX CENTRE + COUNTER VORTEX CENTRES







	1	<b>I</b>	Ţ	<b>#</b>	_ <b>I</b>				<b>.</b>	Ţ.	Ŧ	_ <b>T</b>	-		<b>I</b>				
	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ
			BELO	J 3-1	HOLE	PROB	E DAT	<b>`</b> A											-
			<b>4</b> 80V	= <b>5</b>	HOLE	PROR	= <u>n</u> at	<b>`</b> A											-
1	-34	0 -:	520	-300	-28	0 -2	260	-740	22	0 -3	200	-180	-!ó	0 -	!40	-120	-!0	0 -	<del></del> 90
	<u> </u>	•		Т			1 ⁻	T	-	T-	т [.]	1	г	r 	- <b>T</b>	т ———	т 	-	
	+	++++	+ + +	÷ + +	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + +	+ +	+ +	++++	+ + +	+++++	+ + -•	·+ ++	+++++++++++++++++++++++++++++++++++++++	++++	+++++	+++++++++++++++++++++++++++++++++++++++
	+ + -+	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	+++	+++++	++++	+++++	++++++	+++++
	+  -+   +	+ + +	+ + +	+ + +	+ + +	+++++	+ +	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	++++++	+ + +	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	+ + ×	+ + +	+ + +	+ + +
	++  +  +	+ + +	+++++++++++++++++++++++++++++++++++++++	++++	+ + +	++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	++++++	++++	++++++
		+++	+++++++++++++++++++++++++++++++++++++++	++++	+++++	++++	+++++	+ + +	+ + +	+ + +	+++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+++++
		+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	+ +	+++++	++++	+ + +	++++	+++++	<b>₽</b> <b>+</b> +	+ + +	+++++
)	++	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++++	+ +	+- +
	+	+	+	+	+	+	÷	, +	÷	+	, +	+	+	+ +	+ +	- <b>+</b>	÷	+ +	+
)		++	+	+ +	++	++	+ +	+ +	++	+	÷ +	+	+	+ -	+	+	+	+ -	+
)		+	+	+	+	+	+	÷	+	+	+	÷	÷	÷	+	÷	÷	÷	+-
	+	÷	÷	÷	+	+	÷	+	+	+	÷	÷	÷	÷	÷	+	+		÷
)	-+	÷	÷	+	÷	÷	+	+	÷	- <del>!-</del>	÷	÷	+	+	+	÷	+	÷	÷-
)	┝╼	÷	+	+	+	+	+	+	+	÷	÷	÷	÷	+	÷	÷	÷	+	+-
)	++	-+	+	+	÷	÷	+	÷	÷	÷	+	÷	÷	÷	÷	÷	+	+	÷.
)	<b>}</b> ₩	÷	÷	+	+	+	+	+	÷	+	+	÷	+	+	+	+	-	÷	+-
_	1	ł	+ PF 1	1 3809 1	DATA	X MA	N'JAL	LY IN	TERPO	LATE	DAT.	A +	EZTR/	POLA	נפיי.	ATA			
			YA)	(15 5	SPANV	ISE C	O-OR	DINAT	E FRO	M PE	RSPEX		UGE 1 Ail	JATUM MM1	(MM)				
			A)	(15 1	TANGE	NTIAL	C0_	NEUBU		DOM .									

•

FIGURE 8.15



## FIGURE 6.16



SLOT 10 COMPARISON OF THE THREE INLET BOUNDARY LAYER LOSS CORES

X-AXIS TANGENTIAL CO-ORDINATE FROM WAKE CENTRE-LINE (MM) Y-AXIS SPANWISE CO-ORDINATE FROM PERSPEX ENDWALL (MM)


#### X PASSAGE VORTEX CENTRE

	SL	OT 10	VEC	tor pi Ckenei	LOT C D INL	F SEC		RY VE RY LA	LOCII YER	TIES	(VT (S	EC) = V		C) VT	(M.S.	۲۸+۱	(LOC)	/VA (H	I. S. ')
			X-AX Y-AX VEC	XIS XIS TOR SU	TANGE SPANN CALE	NTIAL ISE ( 20 ME	CO- CO-OR TRES	ORDIN DINAT /SEC	ATE F E FR(	From DM Pei	TRAIL RSPEX	ING E ENDV		DATUM (MM)	(MM)				
220	-	1	<b>i</b> .	I		1	<b>i</b>	1		t	<b>1</b>	1		1	١	ı	;	I	ı -
200	-										×								-
180	<b>-</b> .										-								-
160	<b>-</b> .				,				-		-								
140			```	-	, 1	,	,	-	-	-	-		•				,		•
	~	`	•	-	١	,	,	-	-	-	-	-					,		,
120	+>	`	`	-	1	1	1	-	-		-	-	`	`	`		,	t	/-
100	1 11		` ` `	-	, , , , , , , , , , , , , , , , , , , ,	'	1	1 11	1 1 1				' ' '	```	````			1	, ,
80			111.		///	1/1	///	- - X			11		111.			1111	1111	111	11-
60				11	///////////////////////////////////////										· · -		111,	///////////////////////////////////////	
40	1111	1111	1111	~///	1111	1111							1111	1111	1111				111
20				1111										1111		1111	1111	1111	
0	-	1 1	-		-	_	_	-	_	=	-	-	-	1.	1 1	-	1		_
	-34	0	320	-300	-28	0 -:	260	-240	22	20 -	200	-180	-10	1 50 – 1	40	-120	-10	0 -1	30

	SL	<b>.</b> 01	O VEC	CTOR P	LOT C	of sea		RY VE	LOCI	TIES	(VT (S	EC) =v		C) _VT	(M S	1.44		/\/ 4 //4	
			TH: X-/ Y-/ VE(	INNED XXIS XXIS CTOR S	INLET TANGE SPANW	BOUN NTIAL	NDARY CO- CO-OR	LAYE ORDIN DINAT /SEC	R IATE F E FR(	From Om Pe	TRAIL RSPEX	ING E ENDW	DGE	DATUM (MM)	(MM)			' ¥A 'E	' )
220	-	i		i		1	1	1	-		i	1		1	ſ	:	1	I	1
200	-																		-
180	-																		-
160	-																		-
140			•		•				•		•						•		_
120		•	•		•				-		-		、		•				
100					1	, , /									••••		、 -		, ,
80			1111		11/1	1/1	1111	1111	1111	1111	1111				1111	1111			11/1
60		-		11	///	~~~~	· × 	- 1 - 1 - 1							•		11.	1	~~~~
40				• • • • •		1111				1111	1111	1111	1111	1111					111
20		1111	1111		1111				1111	1111		1111	1111		1111	1111	1111		1111
0	-	-	11	1				=	Ξ	-	-	-	•	•	1.			_	
	-34	40	-320	-300	-28	0 -	260	-240	-22	20 -	200	-180	-16	50 -	40	-120	-10	0 -8	<u> </u>

X PASSAGE VORTEX CENTRE





SLOT 10 STATIC PRESSURE COEFFICIENT ( (P1-PLOCAL), (P01-P1) ) CONTOURS

FIGURE 6.22









FIGURE 6.26





### BLADE SURFACE STATIC PRESSURE COEFFICIENT DISTRIBUTION THICKENED BOUNDARY LAYER DATA

X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

Y-AYIS STATIC PRESSURE COEFFICIENT ( (P1-PLOCAL) / (P01-P1) )



#### BLADE SURFACE STATIC PRESSURE COEFFICIENT DISTRIBUTION

THINNED BOUNDARY LAYER DATA

X-AXIS AXIAL CO-ORDINATE FROM TRAILING EDGE DATUM (MM)

Y-AXIS STATIC PRESSURE COEFFICIENT ( (P1-PLOCAL) / (P01-P1) )













a POINT OF MINIMUM PRESSURE (P_{0LOC} =P₁) b OUTER TOTAL PRESSURE LOSS COEFFICIENT CONTOUR















CARRICK'S CASCADE SECONDARY LOSS PREDICTION ZERO INLET SKEW LOW REYNOLDS No.

FIGURE 7.8

CARRICK'S CASCADE SECONDARY LOSS PREDICTION HIGH INLET SKEW LOW REYNOLDS No. X-AXIS PERCENTAGE OF BLADE SPAN FROM ENDWALL Y-AXIS SECONDARY LOSS COEFFICIENT (NORMALIZED USING INLET DYNAMIC HEAD) ^{0·30} A 1 1 1 ٦ 1 1 ł 1 I 1 X EXPERIMENTAL DATA Х PREDICTED SECONDARY LOSS (a+b+c) Х Х LOSS CORE a - --0.25 NEW ENDWALL BOUNDARY LAYER 5 SECONDARY KINETIC ENERGY USING INLET PROFILE - -Х 0.20 X Х Х Х Х Х 0.15 Х Х Х Х Х Х 0.10 Х Х ×× Х 0 05 Х 0 10 30 15 2**5** 35 40 45 50 5 20 0

FIGURE

## SJOLANDER'S CASCADE SECONDARY LOSS PREDICTION

X-AXIS PERCENTAGE OF ANNULUS HEIGHT FROM HUB Y-AXIS SECONDARY LOSS COEFFICIENT (NORMALIZED USING INLET DYNAMIC HEAD)



# TEST TURBINE NOZZLE GUIDE VANE EXIT ANGLE PREDICTION

X-AXIS PERCENTAGE OF ANNULUS HEIGHT FROM HUB Y-AXIS YAW ANGLE (DEGREES)



FIGJAL .11

# TEST TURBINE NOZZLE GUIDE VANE SECONDARY LOSS PREDICTION

X-AXIS PERCENTAGE OF ANNULUS HEIGHT FROM HUB Y-AXIS SECONDARY LOSS COEFFICIENT (NORMALIZED USING EXIT DYNAMIC HEAD)





X-AXIS PERCENTAGE OF ANNULUS HEIGHT FROM HUB Y-AXIS YAW ANGLE (DEGREES ROTOR RELATIVE)



••

## TEST TURBINE ROTOR SECONDARY LOSS PREDICTION

X-AXIS PERCENTAGE OF ANNULUS HEIGHT FROM HUB Y-AXIS SECONDARY LOSS COEFFICIENT IN STATIC FRAME OF REFERENCE (NORMALIZED USING ROTOR EXIT DYNAMIC HEAD)







•

• ••

